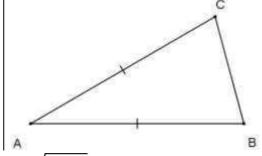
Durée: 1H

Mr ABIDI Farid

Mathématiques


Exercice 1 (8 points)

- 1. Soit (U_n) une suite telle que $U_{13} = 25$, $U_{14} = 39$ et $U_{15} = 54$.
- (U_n) est-elle une suite arithmétique ?
- 2. Soit (U_n) la suite définie par : $U_0 = -2$ et pour tout entier naturel n, $U_{n+1} = U_n + 3$.
 - a) Montrer que (U_n) est une suite arithmétique et donner son terme général.
 - b) Calculer $U_{10} \times U_{11}$.
- 3. Soit (U_n) la suite arithmétique de raison 2 et de cinquième terme 11.
 - a) Vérifier que $U_{14} = 31$ et exprimer U_n en fonction de n.
 - b) Montrer que, pour tout $n \ge 15$, $U_{14} + U_1 + U_2 + ... + U_n = n^2 + 4n 221$.

Exercice 2 (8 points)

ABC est un triangle isocèle en A tel que AB = 4 et BAC = $\frac{\pi}{6}$.

- 1. Calculer l'aire du triangle.
- 2. a) Déterminer la mesure de l'angle ABC.
 - b) Montrer, en utilisant le théorème d'Al-Kashi, que BC = $4\sqrt{2-\sqrt{3}}$.

- c) Montrer, en utilisant la loi du sinus, que $\sin\left(\frac{5\pi}{12}\right) = \frac{\sqrt{2+\sqrt{3}}}{2}$.
- d) Déterminer la valeur exacte de $\cos\left(\frac{5\pi}{12}\right)$.
- 3. Déterminer les valeurs exactes de $\cos \frac{\pi}{12}$, $\sin \frac{\pi}{12}$, $\cos \frac{11\pi}{12}$ et $\sin \frac{11\pi}{12}$.

Exercice 3 (3 points)

- 1. Résoudre dans $[0, \pi]$ chacune des équations : $\sin x = \frac{1}{2}$ et $\cos x = -\frac{1}{2}$
- 2. En déduire l'ensemble des solutions dans $\left[0,\pi\right]$ de l'équation : $\left(\sin x \frac{1}{2}\right)\left(\cos x + \frac{1}{2}\right) = 0$.